
Information Processing Letters 80 (2001) 87–95

On the effective clustering of multidimensional data sequences

Seok-Lyong Leea, Chin-Wan Chungb,∗
a Department of Information and Communication Engineering, Korea Advanced Institute of Science and Technology,

373-1, Kusong-Dong, Yusong-Gu, Taejon 305-701, South Korea
b Department of Computer Science, Korea Advanced Institute of Science and Technology, 373-1, Kusong-Dong, Yusong-Gu,

Taejon 305-701, South Korea

Received 22 June 2000; received in revised form 25 October 2000
Communicated by F.Y.L. Chin

Abstract

In this paper, we investigate the problem of clustering multidimensional data sequences such as video streams. Each sequence
is represented by a small number of hyper-rectangular clusters for subsequent indexing and similarity search processing. We
present a linear clustering algorithm that guarantees the predefined level of clustering quality, and show its effectiveness via
experiments on various video data sets. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Algorithms; Clustering algorithms; Databases; Multidimensional data sequences

1. Introduction

Given a set of data points in a multidimensional
space, the task of clustering is the grouping of the
points into clusters such that points within each
cluster have similar characteristics while those in
different clusters are dissimilar. A data point that is
considerably dissimilar to or inconsistent with the
remainder of the data is referred to as anoutlier or
a noise. The problem we address in this paper is
to design an effective scheme for clustering points
in a multidimensional data sequence (MDS) for the
subsequent indexing and similarity search. In [7],
we have formally defined an MDSS in the n-
dimensional space as a series of its component vectors,
S = 〈S[1], S[2], . . . , S[k]〉, where each vectorS[t]

* Corresponding author.
E-mail addresses:sllee@islab.kaist.ac.kr (S.-L. Lee),

chungcw@cs.kaist.ac.kr (C.-W. Chung).

(1 � t � k) is composed ofn scalar entries, that is,
S[t] = (S1[t], S2[t], . . . , Sn[t]). A typical example of
an MDS is a video stream. By representing each frame
with a feature vector, depending on its attributes such
as color, texture or shape, the video is modeled as a
trail of points in the feature space such that each frame
of the video constitutes a multidimensional point.

Various clustering methods have been studied in
database communities, such as [1,2,4,8,9]. However,
the clustering of MDS should be handled in a way dif-
ferent from traditional clustering methods in various
aspects. Each object in existing methods is mapped
into a single point and thus belongs to a single cluster,
while an MDS is composed of multiple points that are
contained in multiple separate clusters. The shapes of
clusters may also be different. Traditional methods at-
tempt to look at quantitative properties of clusters such
as the mean square error, independent of how they
will be used. Therefore, the shapes of clusters tend to
be determined arbitrarily based on the distribution of

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00144-2



88 S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95

points in the space. On the other hand, we perform the
clustering of MDS as a prior stage for the subsequent
similarity search, such as ‘Find video streams that are
similar to a given stream of a news video’. It means the
shape of each cluster should be appropriate for the in-
dexing mechanism. It is beneficial to consider a hyper-
rectangle as a shape of a cluster, since currently dom-
inant indexing mechanisms such as the R-tree [5] and
its variants are based on a minimum bounding rectan-
gle (MBR) as their node shape and thus we can use
them without modification.

The similarity search applications of MDS place
various special requirements on clustering techniques,
motivating the need for designing a new clustering
algorithm. Those requirements include
(1) minimizing the volume per point (VPP) of clus-

ters,
(2) minimizing the edge (i.e., edge length) per point

(EPP) of clusters,
(3) maximizing the number of points per cluster

(PPC),
(4) dealing with outliers appropriately, and
(5) minimizing the number of input parameters.

The first three requirements imply that our method
aims at generating dense clusters with respect to
volume and edge since they have a great impact on
the retrieval efficiency of large data sets. Clearly,
denser clusters occupy smaller space. When clusters
are indexed in the search space, if clusters are small,
they have less possibility to intersect with the query
region. Therefore, denser clusters have higher search
efficiency than sparser clusters. This is a motivation
of devising our clustering method. In this paper, the
clustering problem is formalized as follows:

Given: A set of MDSs and the minimum number of
pointsminPtsper cluster.

Goal: To find a set of clustersC and a set of outliers
O that optimize the values of specific measurement
criteria.

An input parameterminPts is needed to judge
outliers. More details on how to determine outliers are
given in Section 3.3. One thing we need to clarify
is that, even though our method is designed to run
on the high (say, 50 or 70) dimensionality as well as
the low (say, 3 or 5) dimensionality, its application

has the restriction for the high dimensionality. For
the retrieval of large data sets, high-dimensional data
may not be used in reality since it causes severe
processing overhead. Therefore, if the raw data is
high-dimensional, it is usual that its dimensionality is
reduced to avoid the ‘dimensionality curse problem’.
In this context, our method fits well with the low
dimensionality.

2. Clustering characteristics of MDS

2.1. Cluster representation

A hyper-rectangular clusterCL with k points,Pt for
t = 1,2, . . . , k in the normalized unit space[0,1]n, is
represented by two endpoints,L (low point) andH
(high point) of its major diagonal, and the number of
points in the cluster as follows:CL= 〈L,H,k〉, where

L=
{
(L1,L2, . . . ,Ln) | Li = min

1�t�k
(P it )

}
,

and

H =
{
(H 1,H 2, . . . ,Hn) |Hi = max

1�t�k
(P it )

}

for i = 1,2, . . . , n.

It is sometimes convenient if we represent a point
Pt in the cluster form by placingL = H = Pt and
k = 1, that is,〈Pt ,Pt ,1〉. This cluster is denoted by
CL(Pt ). The volumeVol(CL) and the total edge length
Edge(CL) of CL are computed as:

Vol(CL)=
∏

1�i�n
(H i −Li),

(1)

Edge(CL)= 2n−1 ·
∑

1�i�n
(H i −Li).

Then, the volume and edge ofCL per point,VPP(CL)
andEPP(CL) respectively, will be:

VPP(CL)= Vol(CL)

k
=

∏
1�i�n(H

i −Li)
k

,

(2)

EPP(CL)= Edge(CL)

k
= 2n−1 ·∑1�i�n (H

i −Li)
k

.



S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95 89

2.2. Operation between clusters

The clustering process generates larger clusters
gradually by merging two clusters. We define the
merging operator to do it as follows:

Definition 1 (Merging operator⊕). Let CL1 and
CL2 be clusters. ForCL1 = 〈L1,H1, k1〉 and CL2 =
〈L2,H2, k2〉, the merging operator⊕ is defined as
CL1⊕CL2=CL3 such that

CL3= 〈L3,H3, k3〉,
L3=

{
(L1

3,L
2
3, . . . ,L

n
3) | Li3=min(Li1,L

i
2)

}
,

H3=
{
(H 1

3 ,H
2
3 , . . . ,H

n
3 ) |Hi

3 =max(H i
1,H

i
2)

}
for i = 1,2, . . . , n, andk3= k1+ k2.

Suppose a clusterCLt = 〈Lt ,Ht , kt 〉 to be merged
to a clusterCLs = 〈Ls,Hs, ks〉 in the unit space[0,1]n
during the clustering process, where each ofCLt and
CLs can be a cluster or a point. Merging two clusters
produces a new, probably bigger, cluster, which causes
changes in the volume, the edge, and the number of
points. We are interested in the amount of change
resulting from the merging process, since it is an
important factor for clustering. (We address it later.)
The volume and edge increments,�Vol(CLs,CLt )
and�Edge(CLs ,CLt ), respectively, are formulated as
follows:

�Vol(CLs,CLt )= Vol(CLs ⊕CLt )−Vol(CLs), (3.1)

�Edge(CLs ,CLt )

= Edge(CLs ⊕CLt )−Edge(CLs ). (3.2)

Using above formulae, we can get the mean increment
of volume and edge per point,�VPP and �EPP,
respectively, in the cluster.

�VPP(CLs,CLt )

= �Vol(CLs,CLt )

kt

= Vol(CLs ⊕CLt )−Vol(CLs )

kt
, (4.1)

�EPP(CLs,CLt )

= �Edge(CLs ,CLt )

kt

= Edge(CLs ⊕CLt )−Edge(CLs )

kt
. (4.2)

We can observe that the functions,�VPPand�EPP,
are not symmetric, that is,

�VPP(CLs ,CLt ) �=�VPP(CLt ,CLs), and

�EPP(CLs ,CLt ) �=�EPP(CLt ,CLs).

Both functions are used as important criteria to deter-
mine the cluster in MDS, into whichCLt is merged.

2.3. Clustering factors

The first clustering algorithm for sequences was
proposed in [3], partitioning a sequence into subse-
quences, each of which is contained in an MBR (or a
cluster). This algorithm was slightly modified in [6] to
a two-pass algorithm running forward and backward
to identify video shot boundaries, and also slightly
modified in [7] to support the multidimensional rec-
tangular query. Those algorithms use the marginal cost
(MCOST) which is defined as the average number of
disk accesses divided by the number of points of the
cluster. The grouping of points into clusters is done
in such a way that if MCOST increases for the next
point of a sequence, then a new cluster is started from
the point, otherwise it is included in the current clus-
ter. To determine MCOST, they consider the volume
factor based on the volume increment of the current
cluster when the next point is included into the cluster.
However, it is sometimes not sufficient. We claim the
edge of a cluster should also be considered as an im-
portant factor in addition to the volume. The following
example justifies it intuitively.

Example 1. Let CL1 and CL2 be hexahedral clus-
ters with sidesa, a, and b (a < b), respectively in
the 3-dimensional space as shown in Fig. 1. We are
going to determine the cluster into which a point
P is merged. In Fig. 1(a),�VPP(CL1,CL(P )) =
�VPP(CL2,CL(P )) = a2 · b, �EPP(CL1,CL(P )) =
4 · a and�EPP(CL2,CL(P )) = 4 · b. From the point
of volume as the clustering factor, bothCL1 andCL2
can be candidates. On the other hand, in Fig. 1(b),
�EPP(CL1,CL(P )) = �EPP(CL2,CL(P )) = 4 · a,
�VPP(CL1,CL(P ))= a2·b, and�VPP(CL2,CL(P ))
= a3. In this case, bothCL1 andCL2 can also be can-
didates if we consider the edge as a clustering factor.
However, we observe intuitively thatCL1 is appropri-
ate for the former case whileCL2 is good for the latter



90 S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95

(a) (b)

Fig. 1. Clustering factors: volume and edge. (a) Same volumes, different edges. (b) Different volumes, same edges.

case, sincea < b. It means that both volume and edge
are important factors for clustering sequences.

2.4. Measurement of clustering quality

According to the clustering requirements mentioned
in Section 1, we use three parameters,VPP, EPP, and
PPC, as quantitative measures to evaluate the quality
of clustering. Suppose that the clustering process of
MDSS with k points generatesp clusters. Then,VPP,
EPP, andPPCof MDS S are defined as follows:

VPP=
∑

1�j�p Vol(CLj )∑
1�j�p kj

,

EPP=
∑

1�j�p Edge(CLj )∑
1�j�p kj

, (5)

PPC=
∑

1�j�p kj
p

.

3. Clustering algorithm

Given a collection of MDSs andminPts, our algo-
rithm, CDMDS (Clustering a Data set of MDS), is to
find a set of clustersC and a set of outliersO that
optimize the measures of clustering quality defined in
Eq. (5). To merge two clusters, our algorithm uses cer-
tain criteria that should be satisfied. In this section, we
discuss those criteria and our proposed algorithm.

3.1. τ -bounding condition

To determine whether a point cluster is allowed to
be merged with another cluster or not, we introduce
the bounding condition with respect to the volume and

edge of clusters. Prior to discussing it in detail, we first
define the concept of theunit hyper-cube.

Definition 2 (Unit hyper-cube). Let CLmdsbe a clus-
ter that tightly boundsall k points in MDSS. Then,
the unit hyper-cubeuCUBE is defined as the cube, in
the space[0,1]n occupied by a single point when all
points are uniformly distributed over the hyper-space
of CLmds. If its side-length ise, its volume and edge
will be:

Vol(uCUBE)= en = Vol(CLmds)

k
,

Edge(uCUBE) (6)

= 2n−1 · n · e= 2n−1 · n · n
√

Vol(CLmds)

k
.

If all k points of S are uniformly scattered into
the space of clusterCLmds, we can think one point
is allocated to a unit hyper-cube. We can figure out
intuitively that each point ofS forms a cluster whose
shape is a unit hyper-cube. However, the uniform
distribution is not likely to occur in reality. Points
in MDS usually show the clustered distribution in
real world. For instance, video frames in a shot are
very similar, and thus the points of the same shot are
clustered together. The uniform distribution provides
the bound in determining whether to merge two
clusters or not. The bounding thresholds for volume
and edge,τvol andτedgefor MDS S, are represented as
follows:

τvol= Vol(uCUBE)= en,
(7)

τedge= Edge(uCUBE)= 2n−1 · n · e.



S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95 91

Definition 3 (τ -bounding condition). Suppose a point
clusterCLt is to be merged with a clusterCLs in the
n-dimensional space. Then, theτ -bounding condition
is the condition that must be satisfied to merge two
clusters and it is defined as follows:

�VPP(CLs,CLt )� τvol ∧
�EPP(CLs,CLt )� τedge. (8)

Lemma 1. The clustering that satisfies theτ -bounding
condition guarantees better clustering quality than the
case of the uniform distribution, with respect to VPP
and EPP.

Proof. Suppose that after clustering MDSS with k
points,p clusters(0 � p � k) are produced, and the
set of clusters isC = {CL1, . . . ,CLp}. Let a cluster
CLj (1� j � p) be generated by merging two clusters
u times starting with a single point, and the increments
of volume, edge and #points by thelth merging be
�Volj,l ,�Edgej,l andkj,l , respectively. Sincekj = 1,
Vol(CLj ) = 0, andEdge(CLj ) = 0 in the initial state,
after mergingu-times, we get:

kj = 1+
∑

1�l�u
kj,l ,

Vol(CLj )=
∑

1�l�u
�Volj,l ,

and

Edge(CLj )=
∑

1�l�u
�Edgej,l .

Since every merging step satisfies Eq. (8), the follow-
ing holds:�VPPj,l � en and�EPPj,l � 2n−1 · n · e,
that is,�Volj,l � kj,l · en and�Edgej,l � kj,l · 2n−1 ·
n · e. Thus, we derive:

Vol(CLj ) =
∑

1�l�u
�Volj,l �

∑
1�l�u

(kj,l · en)

<

(
1+

∑
1�l�u

kj,l

)
· en = kj · en, (9.1)

Edge(CLj ) =
∑

1�l�u
�Edgej,l

�
∑

1�l�u
(kj,l · 2n−1 · n · e)

<

(
1+

∑
1�l�u

kj,l

)
· 2n−1 · n · e

= kj · 2n−1 · n · e. (9.2)

Suppose that the volume and the edge per point of
MDS S after clustering areVPP and EPP, respec-
tively, and those of the uniform distribution areVPP0
andEPP0, respectively. Using Eqs. (5), (9.1), (9.2), we
conclude:

VPP=
∑

1�j�p Vol(CLj )∑
1�j�p kj

= Vol(CL1)+ · · · +Vol(CLp)

k1+ · · · + kp
<
k1 · en + · · · + kp · en

k1+ · · · + kp = en = VPP0, (10.1)

EPP=
∑

1�j�p Edge(CLj )∑
1�j�p kj

= Edge(CL1)+ · · · +Edge(CLp)

k1+ · · · + kp
<
k1 · 2n−1 · n · e+ · · · + kp · 2n−1 · n · e

k1+ · · · + kp
= 2n−1 · n · e= EPP0. ✷ (10.2)

3.2. θ -merging condition

After clusters are initially generated from a se-
quence of points, those clusters that are spatially close
need to be merged together. To determine whether two
clusters are allowed to be merged or not, we introduce
theθ -merging conditionas follows:

Definition 4 (θ -merging condition). Suppose two clus-
ters CLs and CLt are to be merged together in the
n-dimensional space. Letθvol= Vol(CLs)+ Vol(CLt )
andθedge= Edge(CLs)+ Edge(CLt ), then theθ -mer-
ging conditionis the condition that must be satisfied to
merge two clusters and it is defined as follows:

Vol(CLs ⊕CLt )� θvol ∧
Edge(CLs ⊕CLt )� θedge. (11)



92 S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95

Lemma 2. The merging of two clusters, CLs and
CLt , that satisfies theθ -merging condition guarantees
better clustering quality than
(1) the case of the uniform distribution, with respect

to VPP and EPP, and
(2) the case of non-merging with respect to VPP, EPP,

and PPC.

Proof. Let CLm =CLs ⊕CLt , thenkm = ks + kt . Let
VPPm, VPPs , VPPt be the VPPs ofCLm, CLs , CLt ,
respectively, andEPPm, EPPs , EPPt be the EPPs of
CLm, CLs , CLt , respectively. By Eqs. (2), (11), we
obtain

km ·VPPm � ks ·VPPs + kt ·VPPt and

km ·EPPm � ks ·EPPs + kt ·EPPt .

Case(1). SinceVPPs < en, VPPt < en, EPPs <
2n−1 · n · e, andEPPt < 2n−1 · n · e hold by Eqs. (9.1),
(9.2), we get:

VPPm � ks ·VPPs + kt ·VPPt
km

<
ks · en + kt · en

km
= en,

EPPm � ks ·EPPs + kt ·EPPt
km

<
ks · 2n−1 · n · e+ kt · 2n−1 · n · e

km

= 2n−1 · n · e.
Case(2). LetVPPn andEPPn be the VPP and EPP

of CLs andCLt for the case of non-merging. Then, by
Eqs. (5), (11), the following holds:

VPPm = Vol(CLm)

km
= Vol(CLs ⊕CLt )

ks + kt
� Vol(CLs)+Vol(CLt )

ks + kt = VPPn.

In a similar way, EPPm � EPPn. It is clear that
merging two clusters has better quality with respect
to PPC since PPC without merging is(ks + kt )/2
while that with merging iskm. Therefore, we conclude
Lemma 2 holds. ✷
3.3. Determining outliers

A sequence may contain outliers that are considered
to be unimportant with respect to the overall clustering

pattern. In our method, each point in a sequence is
initially regarded as a cluster with a single point, and
then closely related clusters are repeatedly merged.
If a certain cluster has “far fewer” points than the
average after the clustering process, all points in it can
then be thought as outliers. For instance, if a cluster
with 2 or 3 points is located away from other clusters,
it may be a set of outliers with a high possibility.
“Far fewer” is of course heuristically determined
depending on applications. Too small value ofminPts
makes unimportant clusters be indexed, degrading the
memory utilization, while too large value ofminPts
makes meaningful clusters be missed. In this context,
if a cluster has points the number of which is less than
a givenminPtsvalue after the clustering process, all
points in the cluster are regarded as outliers. Those
outliers are not indexed, but written out to disk for later
processing.

3.4. Algorithm description

Algorithm CDMDS in Fig. 2 describes the overall
structure. AlgorithmChooseCluster determines the
cluster into which a point is to be merged. First, each
cluster is evaluated with respect toτ -bounding condi-
tion to determine candidate clusters. Then, it chooses
the most appropriate one among the candidates. To do
it, we introduce the combined measureλjoin consider-
ing weight factors,w1 andw2, as follows:

λjoin
(
CLs,CL(Pt )

)= w1 · λvol+w2 · λedge

w1+w2
,

where

λvol= �VPP(CLs ,CL(Pt ))

Vol(CLs ⊕CL(Pt ))
and

λedge= �EPP(CLs,CL(Pt ))

Edge(CLs ⊕CL(Pt ))
. (12)

We can choose values ofw1 andw2 depending on
the importance of the volume and edge factor. In
our experiment, we use the same importance, that is,
w1 = w2 = 1. Normalized values,λvol andλedge, are
introduced to compensate for the variance between
�VPP and �EPP since the simple summation of
two values with a big difference usually leads to
unexpected results that a small value is nearly ignored.
Among candidate clusters, the cluster that has the
minimumλjoin is selected for subsequent merging. If



S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95 93

Algorithm CDMDS
Input: a data set ofMDSs, minPts
Output: cluster setC, outlier setO
Step 0: setC← φ, setO← φ

Step 1: for each MDSSi in the data set (1� i �N)
Ci ,Oi←ClusterMDS(MDSSi ,minPts)
C← C ∪Ci ,O←O ∪Oi

end for
Step 2: return setC, setO

Algorithm ChooseCluster
Input: pointPm, setCi , τvol, andτedge
Output: φ or clusterCLc
Step 0:

result← φ, λcurrent←∞, volcurrent←∞
Step 1: /* Choose a cluster to merge with */

if setCi == φ then
return result

for each clusterCLc in setCi
compute�VPP(CLc,CL(Pm)),

�EPP(CLc,CL(Pm))
if τ -bounding condition holdsthen

computeλjoin(CLc,CL(Pm))
if (λjoin(CLc,CL(Pm)) < λcurrent)∨
(λjoin(CLc,CL(Pm))== λcurrent∧
Vol(CLc ⊕CL(Pm)) < volcurrent) then
λcurrent← λjoin(CLc,CL(Pm))
volcurrent← Vol(CLc ⊕CL(Pm))
result←CLc

end if
end if

end for
Step 2: return result

Algorithm ClusterMDS
Input: MDS Si , minPts
Output: setCi , setOi
Step 0:

setM← all points inSi
setCi← φ, setOi← φ, numCL← 0
computeτvol andτedgefor Si

Step 1: /* Initial cluster generation */
for each pointPm in setM

CLc←ChooseCluster(Pm,Ci, τvol, τedge)

if CLc == φ then
representPm in the cluster formCLnumCL
Ci← Ci ∪ {CLnumCL}
numCL← numCL+ 1

else
CLc←CLc ⊕CL(Pm)

end if
end for

Step 2: /* Cluster elaboration */
for each pair of cluster(CLx ,CLy) in Ci

if θ-merging condition holdsthen
CLx←CLx ⊕CLy
removeCLy from setCi

end if
end for

Step 3: */ Outlier determination */
for each clusterCLc in Ci

if kc <minPtsthen
removeCLc fromCi
insert all points ofCLc intoOi

end if
end for

Step 4: return setCi , setOi

Fig. 2. Clustering algorithm.

there exist multiple clusters with the sameλjoin, then
the clusterCLs with the smallest value ofVol(CLs ⊕
CL(Pt )) is selected. AlgorithmClusterMDS performs
the clustering of each MDS. In Step 1, a set of clusters
is initially generated from a sequence of points by
using AlgorithmChooseCluster, without considering
the order of clusters in a sequence. In Step 2, every
pair of clusters is evaluated with respect toθ -merging
conditionto determine whether each pair of clusters is
to be merged or not. A pair that satisfies the condition
is merged together. In Step 3, the number of points
in each cluster is tested if it is less thanminPts as

described in Section 3.3. All outliers identified are
moved to the set of outliers.

3.5. Complexity of the algorithm

By Algorithm CDMDS in Fig. 2, it is clear that
its complexity is O(N) with respect to the number
of sequencesN in a database. As for the numbers
of points and clusters in each sequence,m and c
respectively, we observe in AlgorithmClusterMDS
that the complexity is the order ofmc in Step 1, the
order ofc2 in Step 2, and the order ofc in Step 3. Since
c is negligibly small compared tom and the value ofc



94 S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95

varies inside the algorithm, we ignorec. Consequently,
the complexity of the algorithm is O(Nm), which is
linear with respect toN andm.

4. Experiments and concluding remarks

4.1. Test data sets

In order to evaluate the effectiveness of our algo-
rithm, we have conducted experiments on video data
sets such as TV news, dramas, and animation films.
Video streams of different lengths are generated from
the video data sources. We extracted RGB color fea-
tures from each frame of the video streams, and repre-
sented a frame by a point in the[0,1]3 space according
to its RGB values. Thus, each video stream is repre-
sented by an MDS. Table 1 summarizes test data sets
used in the experiment.

4.2. Results

Our experiment focuses on showing the clustering
quality of the algorithm with respect to VPP, EPP, and
PPC. We compared our algorithm to the MCOST al-
gorithm proposed in [3] since other related algorithms
are based on it with slight modifications. Our algo-
rithm produces clusters, not considering their order in
an MDS, while the MCOST algorithm considers it, be-
cause the goal of our algorithm is to represent an MDS
by as few clusters as possible. To determine outliers,
a parameterminPtsis set to 5. We believe this choice

Table 1
Test data sets used in the experiment

Data set name Sequence length Number of sequences

v1 L� 64 1632

v2 64<L� 128 1401

v3 128<L� 256 1206

v4 256<L� 512 1017

v5 512<L� 1024 912

v6 1024<L� 2048 813

v7 2048<L� 4096 651

v8 4096<L 513

Total 8145

is reasonable in the video application domain, since it
takes approximately 1/6 s to play a 5-frame video and
the clusters with frames less than 5 are nearly mean-
ingless in reality. A 1/6 s playing time may not be
perceived well by the human visual system. The ex-
perimental results are shown in Fig. 3 and Table 2.

Fig. 3 shows that VPPs of both MCOST and
CDMDS decrease as the length of video sequences
increases. But VPP of CDMDS is 11 to 23% of that
of MCOST. In Fig. 4, we can observe that EPP of
CDMDS is also 38 to 59% of that of MCOST. It
means the clusters produced by CDMDS algorithm
are denser in their volume and edge, which makes the
subsequent search more efficient. As another indicator
to show the effectiveness of clustering, we have listed
PPC’s of CDMDS and MCOST in Table 2. The ratio
CDMDS/MCOST is 0.69 to 2.67 and increases as
the length of sequences increases. It shows that the
clusters generated by our algorithm become gradually
denser for larger video streams, since a longer video

Fig. 3. VPP comparison.

Table 2
PPC ratio (CDMDS/MCOST)

Video type PPC PPC CDMDS/MCOST

(MCOST) (CDMDS) ratio

v1 62.73 43.17 0.6882

v2 74.74 64.60 0.8643

v3 83.34 91.53 1.0982

v4 85.24 119.77 1.4051

v5 85.92 150.48 1.7515

v6 85.23 172.34 2.0221

v7 83.80 193.04 2.3037

v8 86.10 230.30 2.6748



S.-L. Lee, C.-W. Chung / Information Processing Letters 80 (2001) 87–95 95

Fig. 4. EPP comparison.

Table 3
Outlier ratio of MDS

Video type Outlier ratio

(#outlier / #point)

v1 0.06278

v2 0.03812

v3 0.02541

v4 0.02108

v5 0.01651

v6 0.01585

v7 0.01549

v8 0.01294

clip has higher probability that it has similar shots.
For instance, a news video clip has many similar shots
that the same anchor appears. Table 3 indicates the
ratio of the number of outliers vs. the number of
points in sequences. It decreases from 6.28 to 1.29%
as the sequences become longer. Those outliers are
treated separately from clusters for similarity search
processing.

4.3. Concluding remarks

In this paper, we have investigated clustering of
MDS such as video streams. To solve the problem, we
have proposed an effective algorithm which meets five
special requirements identified in Section 1. Our algo-
rithm shows considerable effectiveness with respect to
VPP, EPP, and PPC as shown in the experiment. In ad-
dition, it deals with outliers appropriately, and requires

only one input parameterminPts, except an MDS data
set itself. One of potential applications which is em-
phasized in this paper is the clustering of video data
sets, but we believe other application areas can also
benefit.

Acknowledgement

We would like to thank Professor Francis Y.L. Chin,
editor, for his help and reviewers for their valuable
comments. This research was supported by Korea
Research Foundation Grant (KRF-2000-041-E00262).

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic
subspace clustering of high dimensional data for data mining
applications, in: Proc. of ACM SIGMOD Internat. Conference
on Management of Data, 1998, pp. 94–105.

[2] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based
algorithm for discovering clusters in large spatial databases with
noise, in: Proc. Internat. Conference on Knowledge Discovery
in Databases and Data Mining, 1996, pp. 226–231.

[3] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subse-
quence matching in time-series databases, in: Proc. of ACM
SIGMOD Internat. Conference on Management of Data, 1994,
pp. 419–429.

[4] S. Guha, R. Rastogi, K. Shim, CURE: An efficient clustering
algorithm for large databases, in: Proc. of ACM SIGMOD
Internat. Conference on Management of Data, 1998, pp. 73–84.

[5] A. Guttman, R-trees: A dynamic index structure for spatial
searching, in: Proc. of ACM SIGMOD Internat. Conference on
Management of Data, 1984, pp. 47–57.

[6] V. Kobla, D. Doermann, C. Faloutsos, Video Trails: Represent-
ing and visualizing structure in video sequences, in: Proc. of
ACM Multimedia, 1997, pp. 335–346.

[7] S.L. Lee, S.J. Chun, D.H. Kim, J.H. Lee, C.W. Chung, Simi-
larity search for multidimensional data sequences, in: Proc. of
IEEE Internat. Conference on Data Engineering, 2000, pp. 599–
608.

[8] R.T. Ng, J. Han, Efficient and effective clustering methods for
spatial data mining, in: Proc. of the VLDB Conference, 1994,
pp. 144–155.

[9] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient
data clustering method for very large databases, in: Proc. of
ACM SIGMOD Internat. Conference on Management of Data,
1996, pp. 103–114.


